Issued on Oct.23, 2017 Solutions due: Nov.03, 2017

CS422

Fall 2017, Assignment #4

PROBLEM 8 (2+2P):

- a) Prove that \mathcal{P} is closed under
 - i) binary union, i.e., $A, B \in \mathcal{P} \Rightarrow A \cup B \in \mathcal{P}$
 - ii) intersection, i.e. $A, B \in \mathcal{P} \Rightarrow A \cap B \in \mathcal{P}$
 - iii) complement, i.e. $A \in \mathcal{P} \Rightarrow \mathbb{N} \setminus A \in \mathcal{P}$
 - iv) product, i.e. $A, B \in \mathcal{P} \Rightarrow A \times B := \{ \langle a, b \rangle : a \in A, b \in B \} \in \mathcal{P}$.
- b) Prove that also \mathcal{NP} is closed under i) union, ii) intersection, iii) complement, iv) product. Give *two* proofs for each: One based on non-deterministic WHILE+ programs only, and one based on problems with polynomial-time verifiable witnesses. What makes (iii) difficult?

PROBLEM 9 (1+2P):

- a) Use the Boolean connectives \vee, \wedge, \neg to construct formulae $\psi(x, y, z)$ and $\chi(x, y, z)$ such that $\psi + 2\chi$ is the binary expansion of x + y + z for all $x, y, z \in \{0, 1\}$.
- b) Construct a Boolean formula $\varphi_n(\vec{x}, \vec{y}, \vec{z}, \vec{c})$ with the following property: For $\vec{x}, \vec{y}, \vec{z} \in \{0, 1\}^n$, $\text{bin}(\vec{z}) = z_0 + 2z_1 + \ldots + 2^{n-1}z_{n-1}$ is the binary expansion of the sum $\text{bin}(\vec{x}) + \text{bin}(\vec{y})$ iff there exists a $\vec{c} \in \{0, 1\}^n$ such that $\varphi_n(\vec{x}, \vec{y}, \vec{z}, \vec{c}) = 1$.

PROBLEM 10 (2+2+2P):

Recall the problem *Integer Linear Programming* from the lecture:

$$\mathsf{ILP} \ = \ \left\{ \langle A, \vec{b} \rangle \ \middle| \ n, m \in \mathbb{N}, ; A \in \mathbb{Z}^{n \times m}, \ \vec{b} \in \mathbb{Z}^m, \ \exists \vec{x} \in \mathbb{N}^n : \ A \cdot \vec{x} = \vec{b} \right\}$$

- a) Devise a polynomial-time reduction from the Boolean satisfiability problem, SAT, to ILP.
- b) Devise a polynomial-time reduction from the following problem SubsetSum to ILP:

$$\{\langle v_1, \dots, v_N, v_0 \rangle : N, v_1, \dots, v_N, v_0 \in \mathbb{N}, \exists b_1, \dots, b_N \in \{0, 1\} : b_1v_1 + \dots + b_Nv_N = v_0\}$$

c) Use Problem 9 to describe a polynomial-time reduction from SubsetSum to SAT.